资源类型

期刊论文 58

会议视频 1

年份

2023 4

2022 4

2021 4

2020 5

2019 4

2018 3

2017 2

2016 2

2015 5

2014 3

2013 4

2012 2

2011 3

2010 6

2009 2

2008 1

2007 2

2002 1

2001 1

2000 1

展开 ︾

关键词

热电联产 2

Cu(In 1

Ga)Se2 1

产业化 1

产业链 1

产后妇女;避孕;人工流产 1

低温 1

光加热 1

克努森蒸发源 1

全气候新能源汽车 1

冷热电联产(CCHP) 1

净计量 1

凝结 1

分布式供热 1

分布式能源发电 1

加热 1

加热、通风和空调 1

加热炉 1

协同晶化 1

展开 ︾

检索范围:

排序: 展示方式:

Energy efficiency and carbon dioxide emissions reduction opportunities in district heating source in

Gaofeng CHEN, Xuejing ZHENG, Lin CONG

《能源前沿(英文)》 2012年 第6卷 第3期   页码 285-295 doi: 10.1007/s11708-012-0197-7

摘要: Building a trading market can promote energy conservation provided that the trading method is determined. Energy consumption for heat supply is huge. Tianjin Municipal Government is planning to establish an energy efficiency trading platform for district heating taking into consideration the experience in carbon trading market and specific situation in Tianjin. This paper presented an in-depth analysis of the district heating industry in Tianjin municipality, and identified the potentials of energy saving and carbon dioxide emissions reduction. Since energy efficiency was closely related to different heating source technologies, baselines were determined for boiler plants and thermal power plants respectively. Three scenarios were discussed for baseline determination. 472 boiler plants were surveyed and operational data relating to energy consumption were collected. Through data analysis, 27 boiler plants which have reasonable recorded energy consumption values were chosen as samples. By analyzing the dataset and referring to the related standards, method of determining the baseline for district heating carbon market was established. Finxally, the baseline for boiler plant was determined to be 52.0 kgce/GJ, and that for thermal power plant was 43.0 kgce/GJ in 2011. Carbon abatement against the baselines above was calculated and considerable carbon dioxide emissions reduction could be achieved.

关键词: district heating     energy efficiency     baseline     carbon abatement    

A district heating system based on absorption heat exchange with CHP systems

Lin FU, Yan LI, Yi JIANG, Shigang ZHANG,

《能源前沿(英文)》 2010年 第4卷 第1期   页码 77-83 doi: 10.1007/s11708-010-0022-0

摘要: In order to decrease the energy consumption of large-scale district heating systems with cogeneration, a district heating system is presented in this paper based on absorption heat exchange in the cogeneration system named Co-ah cycle, which means that the cogeneration system is based on absorption heat exchange. In substations of the heating system, the temperature of return water of primary heat network is reduced to about 25°C through the absorption heat-exchange units. In the thermal station of the cogeneration plant, return water is heated orderly by the exhaust steam in the condenser, the absorption heat pumps, and the peak load heater. Compared with traditional heating systems, this system runs with a greater circuit temperature drop so that the delivery capacity of the heat network increases dramatically. Moreover, by recovering the exhausted heat from the condensers, the capacity of the district heating system and the energy efficiency of the combined heat and power system (CHP system) are highly developed. Therefore, high energy and economic efficiency can be obtained.

关键词: cogeneration     district heating     absorption heat exchange     Co-ah cycle    

Proliferation of district heating using local energy resources through strategic building-stock management

Yi DOU, Keijiro OKUOKA, Minoru FUJII, Hiroki TANIKAWA, Tsuyoshi FUJITA, Takuya TOGAWA, Liang DONG

《能源前沿(英文)》 2018年 第12卷 第3期   页码 411-425 doi: 10.1007/s11708-018-0577-8

摘要:

District heating systems using cogeneration technology and renewable resources are considered as an effective approach to resources conservation and reduction of greenhouse gas (GHG) emissions. However, wide-spread aging and depopulation problems, as well as the popularization of energy-saving technologies in buildings, are estimated to greatly decrease energy consumption, leading to inefficiency in district heating and barriers to technology proliferation. From a long-term perspective, land use changes, especially the progression of compact city plans, have the potential to offset the decrement in energy consumption that maintains the efficiency of district heating systems. An integrated model is developed in this paper based on building cohort analysis to evaluate the economic feasibility and environmental impact of introducing district heating systems to a long-term compact city plan. As applied to a case in the Soma Region of Fukushima, Japan, potential migration from the suburbs to the central station districts is simulated, where district heating based on gas-fired cogeneration is expected to be introduced. The results indicate that guided migration to produce concentrated centers of population can substantially increase the heat demand density, which supports a wider application of district heating systems and better low-carbon performance. These results are further discussed in relation to technology innovation and related policies. It is concluded that policies related to urban land use planning and energy management should be integrated and quantitatively evaluated over the long-term with the aim of supporting urban low-carbon sustainable development.

关键词: building stock     compact city     district heating     energy use     Fukushima    

Determining the optimum economic insulation thickness of double pipes buried in the soil for districtheating systems

Fating LI, Pengfei JIE, Zhou FANG, Zhimei WEN

《能源前沿(英文)》 2021年 第15卷 第1期   页码 170-185 doi: 10.1007/s11708-020-0680-5

摘要: The insulation thickness (IT) of double pipes buried in the soil (DPBIS) for district heating (DH) systems was optimized to minimize the annual total cost of DPBIS for DH systems. An optimization model to obtain the optimum insulation thickness (OIT) and minimum annual total cost (MATC) of DPBIS for DH systems was established. The zero point theorem and fsolve function were used to solve the optimization model. Three types of heat sources, four operating strategies, three kinds of insulation materials, three buried depth (BD) values, and seven nominal pipe size (NPS) values were considered in the calculation of the OIT and MATC of DPBIS for DH systems, respectively. The optimization results for the above factors were compared. The results show that the OIT and MATC of DPBIS for DH systems can be obtained by using the optimization model. Sensitivity analysis was conducted to investigate the impact of some economic parameters, i.e., unit heating cost, insulation material price, interest rate, and insulation material lifetime, on optimization results. It is found out that the impact of sensitivity factors on the OIT and MATC of DPBIS for DH systems is different.

关键词: double pipes     optimization model     optimum insulation thickness     minimum annual total cost    

Optimizing environmental insulation thickness of buildings with CHP-based district heating system based

Yumei ZHANG, Pengfei JIE, Chunhua LIU, Jing LI

《能源前沿(英文)》 2022年 第16卷 第4期   页码 613-628 doi: 10.1007/s11708-020-0700-5

摘要: The increase of insulation thickness (IT) results in the decrease of the heat demand and heat medium temperature. A mathematical model on the optimum environmental insulation thickness (OEIT) for minimizing the annual total environmental impact was established based on the amount of energy and energy grade reduction. Besides, a case study was conducted based on a residential community with a combined heat and power (CHP)-based district heating system (DHS) in Tianjin, China. Moreover, the effect of IT on heat demand, heat medium temperature, exhaust heat, extracted heat, coal consumption, carbon dioxide (CO ) emissions and sulfur dioxide (SO ) emissions as well as the effect of three types of insulation materials (i.e., expanded polystyrene, rock wool and glass wool) on the OEIT and minimum annual total environmental impact were studied. The results reveal that the optimization model can be used to determine the OEIT. When the OEIT of expanded polystyrene, rock wool and glass wool is used, the annual total environmental impact can be reduced by 84.563%, 83.211%, and 86.104%, respectively. It can be found that glass wool is more beneficial to the environment compared with expanded polystyrene and rock wool.

关键词: optimum environmental insulation thickness     heat medium temperature     energy grade     extracted heat     exhaust heat    

biomass-fired cogeneration system simultaneously using extraction steam, cooling water, and feedwater for heating

《能源前沿(英文)》 2022年 第16卷 第2期   页码 321-335 doi: 10.1007/s11708-021-0741-4

摘要: An advanced cogeneration system based on biomass direct combustion was developed and its feasibility was demonstrated. In place of the traditional single heat source (extraction steam), the extraction steam from the turbine, the cooling water from the plant condenser, and the low-pressure feedwater from the feedwater preheating system were collectively used for producing district heat in the new scheme. Hence, a remarkable energy-saving effect could be achieved, improving the overall efficiency of the cogeneration system. The thermodynamic and economic performance of the novel system was examined when taking a 35 MW biomass-fired cogeneration unit for case study. Once the biomass feed rate and net thermal production remain constant, an increment of 1.36 MW can be expected in the net electric production, because of the recommended upgrading. Consequently, the total system efficiency and effective electrical efficiency augmented by 1.23 and 1.50 percentage points. The inherent mechanism of performance enhancement was investigated from the energy and exergy aspects. The economic study indicates that the dynamic payback period of the retrofitting project is merely 1.20 years, with a net present value of 5796.0 k$. In conclusion, the proposed concept is validated to be advantageous and profitable.

关键词: biomass-fired cogeneration     district heat production system     absorption heat pump     extraction steam     cooling water     low-pressure feedwater    

Combined heat and power plant integrated with mobilized thermal energy storage (M-TES) system

Weilong WANG, Yukun HU, Jinyue YAN, Jenny NYSTR?M, Erik DAHLQUIST

《能源前沿(英文)》 2010年 第4卷 第4期   页码 469-474 doi: 10.1007/s11708-010-0123-9

摘要: Energy consumption for space and tap water heating in residential and service sectors accounts for one third of the total energy utilization in Sweden. District heating (DH) is used to supply heat to areas with high energy demand. However, there are still detached houses and sparse areas that are not connected to a DH network. In such areas, electrical heating or oil/pellet boilers are used to meet the heat demand. Extending the existing DH network to those spare areas is not economically feasible because of the small heat demand and the large investment required for the expansion. The mobilized thermal energy storage (M-TES) system is an alternative source of heat for detached buildings or sparse areas using industrial heat. In this paper, the integration of a combined heat and power (CHP) plant and an M-TES system is analyzed. Furthermore, the impacts of four options of the integrated system are discussed, including the power and heat output in the CHP plant. The performance of the M-TES system is likewise discussed.

关键词: Mobilized thermal energy system     district heating     thermal energy storage     combined heat and power     detached houses    

A state-of-the-art review of solar passive building system for heating or cooling purpose

Arun Kumar NANDA,C K PANIGRAHI

《能源前沿(英文)》 2016年 第10卷 第3期   页码 347-354 doi: 10.1007/s11708-016-0403-0

摘要: The major portion of energy in a building is consumed by heating, ventilating, and air-conditioning (HVAC). The traditional heating and cooling systems contribute greatly to the emission of greenhouse gases, especially carbon dioxide. Four different ways, i.e., Trombe wall, solar chimney, unglazed transpired solar façade, and solar roof, are adopted for solar heating. Similarly, two major ways, i.e., evaporative cooling and building integrated evaporative cooling are adopted for cooling of the building. Therefore, an attempt has been made in this paper to compile the developments of solar heating and cooling technologies in a building.

关键词: HVAC     heating     cooling     solar heating     carbon dioxide (CO2) emissions    

钢坯加热的数值模拟

陈冠军

《中国工程科学》 2010年 第12卷 第2期   页码 57-61

摘要:

借助CFD仿真手段,模拟蓄热式加热炉内钢坯加热的实际状况,研究了钢坯长度、宽度方向上下表面和中心温度的温度分布,提出钢坯存在上下温差、四角边缘温度高和靠近出钢口钢坯温度低等问题。同时,研究了炉内不同厚度钢坯与加热时间的基本关系,比较了仿真计算结果与实际炉内加热时间,通过数值拟合,得出钢坯厚度与加热时间的拟合公式,可在生产实际中使用。上述研究结果可为加热炉钢坯加热制度的制定和优化提供依据。

关键词: 加热炉     钢坯     加热     模拟    

Impact of climate change on building heating energy consumption in Tianjin

Cao XIANG, Zhe TIAN

《能源前沿(英文)》 2013年 第7卷 第4期   页码 518-524 doi: 10.1007/s11708-013-0261-y

摘要: This paper investigated the variation of building heating energy consumption caused by global warming in Tianjin, China. Based on the hourly historical and monthly projected future (B1/A1B emissions scenarios) meteorological data, the variation of those relevant meteorological parameters was first analyzed. A TRNSYS simulation model for a reference building was introduced to investigate historical variation of office building energy consumption. The results showed that the 10-year-average heating energy consumption of 2001–2010 had reduced by 16.1% compared to that of 1961–1970. By conducting principal component analysis and regression analysis, future variation of building heating load was studied. For B1/A1B emissions scenarios, the multi-year-average heating load was found to decrease by 9.7% (18.1%)/10.2% (22.7%) compared to that of 1971–2010 by 2011–2050 (2051–2100).

关键词: global warming     office building     heating energy consumption    

Higher heating value prediction of torrefaction char produced from non-woody biomass

Nitipong SOPONPONGPIPAT,Dussadeeporn SITTIKUL,Unchana SAE-UENG

《能源前沿(英文)》 2015年 第9卷 第4期   页码 461-471 doi: 10.1007/s11708-015-0377-3

摘要: The higher heating value of five types of non-woody biomass and their torrefaction char was predicted and compared with the experimental data obtained in this paper. The correlation proposed in this paper and the ones suggested by previous researches were used for prediction. For prediction using proximate analysis data, the mass fraction of fixed carbon and volatile matter had a strong effect on the higher heating value prediction of torrefaction char of non-woody biomass. The high ash fraction found in torrefied char resulted in a decrease in prediction accuracy. However, the prediction could be improved by taking into account the effect of ash fraction. The correlation developed in this paper gave a better prediction than the ones suggested by previous researches, and had an absolute average error (AAE) of 2.74% and an absolute bias error (ABE) of 0.52%. For prediction using elemental analysis data, the mass fraction of carbon, hydrogen, and oxygen had a strong effect on the higher heating value, while no relationship between the higher heating value and mass fractions of nitrogen and sulfur was discovered. The best correlation gave an AAE of 2.28% and an ABE of 1.36%.

关键词: higher heating value     correlation     biomass     proximate analysis     ultimate analysis    

Operating characteristic analysis on the ultra-thin low temperature floor-heating system

Hualing ZHANG, Xiaopeng SONG

《结构与土木工程前沿(英文)》 2013年 第7卷 第2期   页码 127-132 doi: 10.1007/s11709-013-0200-3

摘要: Prefabricated ultra-thin radiant heating panel, as a new heating terminal type, is becoming a highlight in Yangtze River Valley area, China recently. However, there is a lack of operating characteristic research in this region, especially the energy consumption and operating mode are even less. To obtain these data, a heating system was set up in a duplex house in Chongqing. The test results show that the floor heating system could almost satisfy thermal comfort requirement at supply water temperature 45°C. But the preheating time was up to 4.5 h which was 1 h longer than that at supply water temperature 50°C. Meanwhile, the energy consumption at supply water temperature 50°C increased 0.10 Nm /h, and the operating efficiency decrease about 2.6% compared to those at water temperature 45°C. Considering both the thermal lag and operating efficiency, a reasonable suggestion was proposed in this paper. That was, the standard families which just stay home at night should adopt the interim mode of partial room with part time. And the supply water temperature should be properly raised during the preheating period and lowered down in the steady heating stage.

关键词: ultra-thin floor heating panel     the preheating time     thermal comfort     energy saving    

Optimization model analysis of centralized groundwater source heat pump system in heating season

Shilei LU,Yunfang QI,Zhe CAI,Yiran LI

《能源前沿(英文)》 2015年 第9卷 第3期   页码 343-361 doi: 10.1007/s11708-015-0372-8

摘要: The ground-water heat-pump system (GWHP) provides a high efficient way for heating and cooling while consuming a little electrical energy. Due to the lack of scientific guidance for operating control strategy, the coefficient of performance (COP) of the system and units are still very low. In this paper, the running strategy of GWHP was studied. First, the groundwater thermal transfer calculation under slow heat transfixion and transient heat transfixion was established by calculating the heat transfer simulation software Flow Heat and using correction factor. Next, heating parameters were calculated based on the building heat load and the terminal equipment characteristic equation. Then, the energy consumption calculation model for units and pumps were established, based on which the optimization method and constraints were established. Finally, a field test on a GWHP system in Beijing was conducted and the model was applied. The new system operation optimization idea for taking every part of the GWHP into account that put forward in this paper has an important guiding significance to the actual operation of underground water source heat pump.

关键词: optimization model     groundwater source heat pump system     theoretical analysis     example verification     heating season    

Fault simulation of boiler heating surface ash deposition in a power plant system

Weiwei ZHANG, Huisheng ZHANG, Ming SU

《能源前沿(英文)》 2011年 第5卷 第4期   页码 435-443 doi: 10.1007/s11708-011-0162-x

摘要: The simulation model of a power generation system was developed based on EASY5 simulation platform. The performances of the power plant under the conditions of the furnace slagging and ash deposition of the heating surfaces in the boiler were simulated. The results show that the simulation model can reasonably reflect the characteristics of the power plant when each component is under fault conditions. Through fault simulation, the change of the performance parameters can be obtained, which can be used in fault diagnosis system as the diagnosis criterion for expert system.

关键词: boiler     slagging     ash deposition     fault simulation    

Constant temperature control of tundish induction heating power supply for metallurgical manufacturing

Yufei YUE, Qianming XU, Peng GUO, An LUO

《能源前沿(英文)》 2019年 第13卷 第1期   页码 16-26 doi: 10.1007/s11708-018-0572-0

摘要: The tundish induction heating power supply (TIHPS) is one of the most important equipment in the continuous casting process for metallurgical manufacturing. Specially, the constant temperature control is greatly significant for metallurgical manufacturing. In terms of the relationship between TIH load temperature and output power of TIHPS, the constant temperature control can be realized by power control. In this paper, a TIHPS structure with three-phase PWM rectifiers and full-bridge cascaded inverter is proposed. Besides, an input harmonic current blocking strategy and a load voltage feedforward control are also proposed to realize constant temperature control. To meet the requirement of the system, controller parameters are designed properly. Experiments are conducted to validate the feasibility and effectiveness of the proposed TIHPS topology and the control methods.

关键词: tundish induction heating power supply (TIHPS)     constant temperature control     input harmonic current blocking     load voltage feedforward    

标题 作者 时间 类型 操作

Energy efficiency and carbon dioxide emissions reduction opportunities in district heating source in

Gaofeng CHEN, Xuejing ZHENG, Lin CONG

期刊论文

A district heating system based on absorption heat exchange with CHP systems

Lin FU, Yan LI, Yi JIANG, Shigang ZHANG,

期刊论文

Proliferation of district heating using local energy resources through strategic building-stock management

Yi DOU, Keijiro OKUOKA, Minoru FUJII, Hiroki TANIKAWA, Tsuyoshi FUJITA, Takuya TOGAWA, Liang DONG

期刊论文

Determining the optimum economic insulation thickness of double pipes buried in the soil for districtheating systems

Fating LI, Pengfei JIE, Zhou FANG, Zhimei WEN

期刊论文

Optimizing environmental insulation thickness of buildings with CHP-based district heating system based

Yumei ZHANG, Pengfei JIE, Chunhua LIU, Jing LI

期刊论文

biomass-fired cogeneration system simultaneously using extraction steam, cooling water, and feedwater for heating

期刊论文

Combined heat and power plant integrated with mobilized thermal energy storage (M-TES) system

Weilong WANG, Yukun HU, Jinyue YAN, Jenny NYSTR?M, Erik DAHLQUIST

期刊论文

A state-of-the-art review of solar passive building system for heating or cooling purpose

Arun Kumar NANDA,C K PANIGRAHI

期刊论文

钢坯加热的数值模拟

陈冠军

期刊论文

Impact of climate change on building heating energy consumption in Tianjin

Cao XIANG, Zhe TIAN

期刊论文

Higher heating value prediction of torrefaction char produced from non-woody biomass

Nitipong SOPONPONGPIPAT,Dussadeeporn SITTIKUL,Unchana SAE-UENG

期刊论文

Operating characteristic analysis on the ultra-thin low temperature floor-heating system

Hualing ZHANG, Xiaopeng SONG

期刊论文

Optimization model analysis of centralized groundwater source heat pump system in heating season

Shilei LU,Yunfang QI,Zhe CAI,Yiran LI

期刊论文

Fault simulation of boiler heating surface ash deposition in a power plant system

Weiwei ZHANG, Huisheng ZHANG, Ming SU

期刊论文

Constant temperature control of tundish induction heating power supply for metallurgical manufacturing

Yufei YUE, Qianming XU, Peng GUO, An LUO

期刊论文